Steane Encoding#
This notebook demonstrates the construction and simulation of a logical Steane encoder circuit. Steane code was introduced in [Steane[1]]. In surface code, this logical circuit can be used to prepare the magic state for logical S gate [Fowler et al.[2]].
Construction#
tqec
provides builtin functions tqec.gallery.steane_encoding
to construct it.
[1]:
from tqec.gallery.steane_encoding import steane_encoding
graph = steane_encoding()
graph.view_as_html()
[1]:
We can use the find_correlation_surfaces()
method to identify all correlation surfaces, and then visualize them using the view_as_html()
method. In this case, there are a total of seven correlation surfaces. For simplicity, only two are shown here.
[2]:
correlation_surfaces = graph.find_correlation_surfaces()
len(correlation_surfaces)
[2]:
7
[3]:
graph.view_as_html(
pop_faces_at_direction="-Y",
show_correlation_surface=correlation_surfaces[0],
)
[3]:
[4]:
graph.view_as_html(
pop_faces_at_direction="-Y",
show_correlation_surface=correlation_surfaces[1],
)
[4]:
Circuit#
Here we show an example circuit of Steane encoding circuit with \(d=3\) that is initialized and measured in X basis. The circuit can be downloaded here or viewed in Crumble.
[5]:
from tqec import Basis, NoiseModel, compile_block_graph
graph = steane_encoding(Basis.X)
compiled_graph = compile_block_graph(graph)
circuit = compiled_graph.generate_stim_circuit(
k=1, noise_model=NoiseModel.uniform_depolarizing(p=0.001)
)
Simulation#
Here we show the simulation results for all the seven observables under uniform depolarizing noise model.
Click to show the full code used for simulation
from multiprocessing import cpu_count
from pathlib import Path
import matplotlib.pyplot as plt
import numpy
import sinter
from tqec.gallery import steane_encoding
from tqec import NoiseModel
from tqec.simulation.plotting.inset import plot_observable_as_inset
from tqec.simulation.simulation import start_simulation_using_sinter
from tqec.utils.enums import Basis
SAVE_DIR = Path("results")
def generate_graphs(support_observable_basis: Basis) -> None:
block_graph = steane_encoding(support_observable_basis)
zx_graph = block_graph.to_zx_graph()
correlation_surfaces = block_graph.find_correlation_surfaces()
# Start simulation using sinter, note that the `save_resume_filepath` is useful
# when simulation takes a long time.
# If the Python interpreter is stopped or killed, calling this method again with
# the same file path will load the previous results and resume from where it left off.
stats = start_simulation_using_sinter(
block_graph,
range(1, 4),
list(numpy.logspace(-4, -1, 10)),
NoiseModel.uniform_depolarizing,
manhattan_radius=2,
observables=correlation_surfaces,
num_workers=cpu_count(),
max_shots=1_000_000,
max_errors=5_000,
decoders=["pymatching"],
print_progress=True,
# note that save_resume_filepath and database_path can help reduce the time taken
# by the simulation after the database and result statistics have been saved to
# the chosen path
save_resume_filepath=Path(
f"../_examples_database/steane_stats_{support_observable_basis.value}.csv"
),
database_path=Path("../_examples_database/database.pkl"),
)
for i, stat in enumerate(stats):
fig, ax = plt.subplots()
sinter.plot_error_rate(
ax=ax,
stats=stat,
x_func=lambda stat: stat.json_metadata["p"],
failure_units_per_shot_func=lambda stat: stat.json_metadata["d"],
group_func=lambda stat: stat.json_metadata["d"],
)
plot_observable_as_inset(ax, zx_graph, correlation_surfaces[i])
ax.grid(axis="both")
ax.legend()
ax.loglog()
ax.set_title("Steane Encoding Error Rate")
ax.set_xlabel("Physical Error Rate")
ax.set_ylabel("Logical Error Rate(per round)")
fig.savefig(
SAVE_DIR
/ f"steane_encoding_result_{support_observable_basis}_observable_{i}.png"
)
def main():
SAVE_DIR.mkdir(exist_ok=True)
generate_graphs(Basis.X)
generate_graphs(Basis.Z)
if __name__ == "__main__":
main()
Z Basis#
[7]:
generate_graphs(Basis.Z)
X Basis#
[8]:
generate_graphs(Basis.X)